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Mechanical metamaterials are usually designed to show desired
responses to prescribed forces. In some applications, the desired
force–response relationship is hard to specify exactly, but exam-
ples of forces and desired responses are easily available. Here,
we propose a framework for supervised learning in thin, creased
sheets that learn the desired force–response behavior by physi-
cally experiencing training examples and then, crucially, respond
correctly (generalize) to previously unseen test forces. During
training, we fold the sheet using training forces, prompting local
crease stiffnesses to change in proportion to their experienced
strain. We find that this learning process reshapes nonlinearities
inherent in folding a sheet so as to show the correct response
for previously unseen test forces. We show the relationship
between training error, test error, and sheet size (model com-
plexity) in learning sheets and compare them to counterparts
in machine-learning algorithms. Our framework shows how the
rugged energy landscape of disordered mechanical materials can
be sculpted to show desired force–response behaviors by a local
physical learning process.

physical learning | supervised learning | adaptation | origami |
metamaterials

The design of mechanical metamaterials usually assumes that
desired force–response properties are given as a top–down

specification. For example, principles of topological protection
can be used to design materials where forces at specific sites lead
to localized deformations (1, 2), while other principles (3) can
help communicate that deformation to a specific distant site. In
these examples and many others (4–8), we rationally optimize
design parameters—e.g., spring constants and geometry—to
achieve a specified force–response relationship.

A different approach, closely connected to supervised learning
in computer science, is useful when the force–response behavior
is too complex to specify in a top–down manner, but it is easy to
give examples of the desired behavior. In this learning approach,
the emphasis is on inferring the right force–response relationship
from such training examples, with success evaluated on the ability
to extrapolate the relationship to unseen test examples.

In this work, we wish to employ the advances of learning the-
ory, but, crucially, perform the learning outside of the computer,
at the level of the physical material itself. This way, we introduce
a physical learning model, able to learn from (adapt to) shown
examples and generalize to novel, unseen examples. The ability
to generalize to show the correct response to novel test examples
has fueled the success of machine learning. Such generalization
would also be useful in materials when the use cases are either
complex or are not fully known at the time of design. Consider
applications such as micro-electro-mechanical systems, where a
mechanical membrane must either complete or open an elec-
trical circuit by deploying one of two folding responses A or B
in response to two different sets of force patterns SA or SB ,
respectively.

Only some examples of the force patterns in the sets SA,SB

may be known at the time of design. Further, the distinction
between the force patterns in the sets SA,SB may not be easily

apparent, similarly to how pixel-intensity correlations that dis-
tinguish images of cats and dogs are nontrivial. However, much
in the way a neural network can learn correlation features that
distinguish cats from dogs by seeing examples, a training pro-
cedure for materials might be able to learn and respond to
high-dimensional correlation features that distinguish force pat-
terns in the sets SA and SB . Crucially, the trained material could
distinguish novel patterns in SA,SB that were not used as part
of the training. Finally, even when distinguishing features are
known a priori, learning offers a natural way for materials to
arrive at the right design parameters themselves, without need
for a complex optimization algorithm on a computer.

While naturally occurring systems like neural networks (9),
slime molds (10), and plant-transport networks (11) use similar
ideas to adapt their response to environmental inputs, mechan-
ical supervised learning has thus far not been used to obtain
functional man-made materials. Here, we propose an approach
for the supervised training of a mechanical material through
repeated physical actuation. We work with a model of creased
thin sheets where crease stiffnesses can change as a result of
repeated folding. We assume a training set—that is, a list of force
patterns and desired responses. Each training example of a force
pattern is applied to the sheet; if the response is the desired one,
as determined by a “supervisor,” folded creases are allowed to
soften in proportion to their folding strain. If the response is
incorrect, creases stiffen instead. We then test the trained sheet
by applying unseen force patterns (test examples) drawn from
the same underlying distribution as the training data. We study
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Fig. 1. Training thin sheets to classify spatial force patterns. (A) We consider thin, stiff sheets with creases whose stiffnesses (indicated by thickness of green
segments) can be changed by repeated folding. (B) Such sheets can fold in response to a discrete spatial force pattern F applied on the sheet. To emphasize
the high-dimensional nature of F, we draw an analogy between F and an image where the gray-scale value of each pixel corresponds to the force at a
particular location on the sheet (SI Appendix, section 1). Particular force patterns correspond to examples of different classes (e.g., cat Fa and dog Fb). (C)
An untrained sheet with uniform stiffness shows random folded responses for different spatial force patterns. (D) By allowing crease stiffness to change in
response to strain, we train the sheet to learn correlation features that distinguish different classes of force patterns. Consequently, the sheet classifies force
patterns by showing one distinct folded response for each class.

test and training errors and, thus, the sheet’s ability to generalize
to novel patterns as a function of its size.

Our proposal here relies on a plastic element—namely, crease
stiffness. Materials that stiffen or soften with strain have been
demonstrated in several contexts (12–15), including recently in
the training of mechanical metamaterials (16). We discuss how
learning performance may be affected by limitations on the
dynamic range of stiffness and other practical constraints in such
materials. We hope our results here will provoke further work on
how the frameworks of learning theory could inform the creation
of new classes of designer materials.

Results
We demonstrate our results with a creased, thin, self-folding
sheet (Fig. 1A), which is naturally multistable. Our analysis can
be generalized to other disordered mechanical systems, such as
elastic networks (16), that are also generically multistable. It was
previously shown that creased sheets, such as those of self-folding
origami, can be folded into exponentially many discrete folded
structures from the flat, unfolded state (17, 18). Such exponen-
tial multistability can be a problem (8, 17) from an engineering
standpoint, as precise controlled folding is required to obtain the
desired folded structure.

Here, we exploit such multistability to train a classifier of input
force patterns. If we apply a spatial force pattern F on the flat
sheet (Fig. 1 A and B), the sheet will fold into a particular folded
structure ρ(F)—e.g., described by dihedral folding angles at each
crease ρi . To emphasize the high-dimensional nature of space
of force patterns, in Fig. 1 B–D, we represent each force with
a gray-scale image, where pixel values are an analogy to forces
at designated points on the sheet. In practice, we apply these
forces as torques directly on creases (SI Appendix, section 1). The
set of all force patterns {F} that lead to one particular folded
structure ρm , due to the dynamics of folding, is defined as the
“attractor” of folded structure m in the space of force patterns
(color-coded regions in Fig. 2B). The complex attractor structure
of force–response for a thin sheet naturally serves as a classifier
of force patterns, albeit a random classifier (Fig. 1C). The goal of
the training protocol is to obtain a sheet with a specific desired
mapping between force patterns and folded structures (Fig. 1D).

The mapping between force and folded structure is controlled
by local properties of the system, such as thickness or stiffness
(19, 20) (SI Appendix, section 1). Previously, we found that the
folded response to a given force pattern F can be modified
by changing the stiffness ki of different creases i in the sheet
(8). Here, we employ a “supervised learning” approach to nat-
urally tune stiffness values ki so that the sheet classifies forces

as desired. Intuitively, this is done by applying examples of force
patterns to the sheet and modifying crease stiffness accordingly,
in a way that reinforces the correct response and discourages
incorrect folding (Fig. 2A). Such training, carried out iteratively
for different force-pattern examples, has the effect of morph-
ing the attractor structure to better approximate the desired
response (Fig. 2B).

Consider two distributions of force patterns, each designated
as a particular class (e.g., “cats” and “dogs”). For example, Fig. 3
A, Upper shows two classes of forces defined by: S dog = {F|F ·
Fdog≥D , F ·Fdog >F ·Fcat}, and similarly for S cat for a threshold
D = 0.6. (In Fig. 3A, S dog is blue, and S cat is orange.)

Assume we are given two sets of labeled force patterns as train-
ing examples Fdog = {F∈S dog}, F cat = {F∈S cat}, each with n
training force patterns (in Fig. 3 A, Lower, we sample sets with
n = 20). Together, Fdog and F cat are defined as the training set.
We desire all forces in S dog to result in one common folded
structure, while all forces in S cat fold the sheet to a distinct, but
common, folded structure. While S dog, S cat are separable in some
two-dimensional (2D) projection of force space, learning is non-
trivial, since the sheet must learn the two dimensions in which
these distributions are separable.

A Mechanical Supervised Training Protocol. We pick 40 forces (20
blue and 20 orange) from the dog and cat distributions to serve
as the training set and apply our training algorithm described
below to a thin sheet with uniformly stiff creases. In our training
protocol, each of the training force patterns F is applied to the
sheet in sequence, to obtain a folded structure ρ(F). A supervisor
determines whether the resulting folded state ρ(F) is correct or
incorrect by comparing the three-dimensional geometry to that
of a reference folded state ρref for that class. The reference state
can be selected in several ways. Here, we average the response
of the untrained sheet on training examples in each class (SI
Appendix, section 2).

We then apply the following learning rule that stiffens or
softens each crease in proportion to folding in that crease:

dki
dt

=

{ −αρri , if ρ(F) is correct
+αρri , otherwise,

[1]

for the stiffness ki of each crease i . α is a learning rate, setting
how fast stiffness values ki are updated due to training examples
(here, we use α= 10−4). r models nonlinearities in strain-based
softening or stiffening of materials; we use r = 2. Such plastic-
ity is experimentally seen in several materials (21–23); we discuss
other learning rules and experimental constraints later. As we
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Fig. 2. Supervised training of thin sheets. (A) A sheet with random crease
geometry is folded with a training force pattern Fa, resulting in a folded
structure ρ. The stiffness ki of each crease i is modified according to a local
learning rule; if the folded structure ρ is the desired response for Fa, as
determined by a supervisor, creases soften in proportion to their folding
strain ρi . Otherwise, creases stiffen. (B) This rule trains the sheet to perform
the desired classification of force patterns. The untrained sheet shows mul-
tiple folded structures in response to force patterns (a 2D cross-section of
force pattern space is shown, with F1, F2, F3 as three particular directions
in force space; SI Appendix, section 1). The trained sheet shows only two
folded responses that mimic the desired mapping of force patterns to folded
structures.

employ a physical model of origami sheets, we note that any rule
that changes the stiffness of a crease has to be local—i.e., the
stiffness of a crease i may not change due to the folding angle of
a different crease j (which crease i has no information of). This
is a major departure from learning rules in machine-learning
algorithms, which are typically nonlocal (24, 25). For further
information about this learning rule and its generalization to
multiclass classification, see SI Appendix, section 2.

After each round of training, the pattern is unfolded back to
the flat state. The same supervised learning step is then repeated
in sequence for all training force patterns. A training epoch is
defined as one pass through the entire training set.

We find that, as training proceeds, the number of observed
folded structures decreases (fewer colors), and nearly all train-
ing force patterns fold the sheet into the “blue” or the “orange”
labeled structures after epoch 40 (diamonds in Fig. 3B). The frac-
tion of training force patterns that fold the sheet into the correct
structure is defined as the training accuracy. This measure is an
unbiased estimator of classification performance, as we choose
the number of training forces to be the same in every class. Note
that the different folded states of disordered sheets are typically
highly distinct, even at the level of mountain–valley patterns (17,
18); hence, no special clustering algorithm is required to identify
distinct structures and assign them distinct colors in Fig. 3.

However, a successfully trained sheet should correctly classify
previously unseen “test” force patterns, sampled from the same
distributions. We tested the trained sheet by applying such test
examples drawn from the distributions S dog,S cat and recording

the resulting folded structure (800 test force patterns for every
class). In analogy to the training sets, the fraction of test exam-
ples yielding the correct folded structure is defined as the test
accuracy. High test accuracy is observed (Fig. 3 C and D) (∼ 80%
of the test examples classified correctly); thus, the sheet gener-
alizes and is able to have the right response to novel test force
patterns through the changes induced by training examples.

Heterogeneous Crease Stiffness. Our learning rule facilitates clas-
sification by creating heterogeneous crease stiffness across the
sheet (Fig. 4A). Indeed, as training proceeds, we find that the
variance ∆k2 of stiffness grows (Fig. 4B, depicting the evolution
of the stiffness profile for the learning process shown in Fig. 3).
If the sheet is trained beyond the optimal point, the stiffness
variance still grows, but the classifier eventually fails, as seen in
Fig. 3 B and C. The failure mode of overtraining is typically that
all forces fold the sheet into a single folded structure, resulting
in no classification. This overtraining failure is associated with a
large stiffness dynamic range, rather than with too-small stiffness
values.

We can understand this relationship between heterogeneous
stiffness (∆k) and training using a simple model. A heteroge-
neous crease stiffness profile k with high stiffness ki in crease
i , but no stiffness elsewhere, will lift the energy of structures ρ
with small folding ρi in crease i less than structures with large ρi .
Hence, heterogeneous k can raise the energy of select structures,
reducing their attractor size, while other structures remain low
in energy and grow in attractor size. If we assume that folding
angles ρa of structure a are randomly distributed (verified ear-
lier in ref. 7) and assume a random stiffness pattern with SD ∆k ,
the energies

∑
i kiρ

2
i of different structures will be distributed as

a Gaussian with mean µ= γk̄ and SD σ=β∆k , where k̄ is the
mean stiffness, and γ,β are some numerical parameters.

If structures above energy EF are inaccessible to folding, the
number of accessible folded structures is

#(∆k ,N )∼ 2N

[
1− erf

(
γk̄ −EF

β∆k

)]
. [2]

Hence, the number of surviving folded structures should
decrease fast with ∆k . This effect is indeed observed for trained
origami sheets of different sizes (Fig. 4D). From numerical
exploration of the energy distributions in this model, we find that
γ is a constant, regardless of sheet size, while β∼N−0.5 shrinks
with sheet size (central limit theorem). Using this form of β in
Eq. 2 predicts that the elimination of structures happens at a
lower ∆k for larger sheets, consistent with our results in Fig. 4 C
and D.

We conclude that as the training protocol proceeds, the stiff-
ness variance ∆k2 grows, and the number of available folded
structures decreases. The last surviving folded structures, rein-
forced by the learning rule of Eq. 1, classify the force distribu-
tions correctly. Thus, the learning process merges attractors of
the untrained sheet such that the surviving attractors recapitulate
features of the desired force-fold mapping.

Generalization and Sheet Size. Statistical learning theory (27) sug-
gests that two critical parameters set the quality of learning: 1)
the number of training examples seen, and 2) the complexity of
the learning model. An increased number of training examples
usually decreases training accuracy. However, test accuracy—i.e.,
the response to novel examples or the ability to generalize—
improves. Furthermore, the improvement of test accuracy is
larger for complex models with more fitting parameters. Intu-
itively, complex models “overfit” details of small training sets,
and thus show low test accuracy, even if training accuracy is high.

Our sheets exhibit signatures of these learning-theory results,
with the size of the sheet (number of creases) playing the role
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Fig. 3. Supervised learning of cap-like force distributions. (A) We define distributions Sdog (blue) and Scat (orange) of force patterns in the space
of applied forces (2D projection shown). Twenty training examples (diamonds) are drawn from both distributions. (B) An untrained sheet folds into
many distinct folded structures (different colors) in response to applied force patterns. As training progresses, most force patterns are classified as
either blue or orange, according to the cap they belong to. When overtrained, all force patterns result in only one folded structure (orange). (C)
The trained sheet reaches peak performance after ∼ 40 epochs of supervised training (i.e., passes through the training examples). The trained sheet
not only classifies the training set correctly (training accuracy), but generalizes to unseen test force patterns (test accuracy). (D) The trained sheet is
highly accurate when classifying force patterns near the center of the distributions, but less accurate close to the true decision boundary between the
distributions.

of model complexity. For a sheet of fixed size, trained on the
distributions of Fig. 3, we observe that increasing the number of
training examples increases test accuracy and decreases training
accuracy (Fig. 5A). In Fig. 5B, we find that the test accuracy of
larger sheets with more creases improves more dramatically with
the size of the training set, compared to smaller sheets.

These results suggest that sheets with more creases correspond
to more complex classification models (e.g., a deeper neural net-

work). For example, crease stiffnesses are the learnable parame-
ters in our approach; hence, increasing their number amounts to
using a training model with more parameters. Further, untrained
sheets with more creases support exponentially more folded
structures (17, 18), as shown by the color-coded force-to-folded-
structure relationship in Fig. 5C. The training protocol achieves
correct classification by merging different-colored regions.
Thus, larger sheets can approximate more complex decision

14846 | www.pnas.org/cgi/doi/10.1073/pnas.2000807117 Stern et al.
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Fig. 4. Training increases the variance of crease stiffness across the sheet.
(A) Untrained sheets have a homogeneous distribution of crease stiffnesses,
while trained sheets have heterogeneous stiffness profiles (width of green
lines). (B) As the sheet is trained, the stiffness of different creases changes
to different extents, such that the variance in stiffness values grows over
training time (envelope shows the least and most stiff creases). (C) Larger
sheets with more creases require smaller variance in their stiffness values
for optimal training. (D) An untrained sheet starts with exponentially many
available folded structures. During training, the number of available folded
structures decreases exponentially with increasing stiffness variance ∆k2,
allowing the sheet to classify a few distinct classes.

boundaries by combining the smaller regions (Fig. 5C), and thus
act as more complex models to be favored when the amount
of training data is large. In Discussion, we use these results to
contrast memory and learning in mechanical systems.

Real-World Classification Problems. We have shown how disor-
dered thin sheets can classify force distributions described by one
feature (Fig. 3); one may ask whether these sheets can classify
data described by multiple features.

We tested our learning protocol on the classic Iris dataset
(28), used extensively in the past to benchmark classification
algorithms. This dataset reports four measurements—length and
width of petals and sepals—for individual specimens of different
Iris species. While different Iris species cannot be distinguished
by any one of these properties, we wanted to test if our sheet
can learn the combination of features needed to distinguish
species.

We picked the two most similar species in this dataset, Iris ver-
sicolor and Iris virginica (Fig. 6A). We translated the four flower
measurements to four force components applied to a sheet (SI
Appendix, section 4). We then applied our training algorithm
with a training set consisting of 10 examples of I. versicolor and
I. virginica (diamonds in Fig. 6C). The resulting trained sheet
was tested on 80 unseen examples of these species; the trained
sheet was able to identify the species of 91% of previously unseen
specimens correctly.

We have tested our training protocol on more complex,
higher-dimensional distributions (SI Appendix, section 3). For
example, we used the folding behavior of one thin sheet (the
master) as the target behavior for another thin sheet with a dis-
tinct crease geometry. We find that the trained sheet is able to
correctly predict the response of the master sheet to forces not
seen during training. Thus, by using our training protocol, sheets

can learn and generalize complex force-to-folded response maps
from examples.

Experimental Considerations. Our learning framework requires
materials that can plastically stiffen or soften when strained
repeatedly (29). Several such materials and structures are known,
including shape memory polymers (30, 31), shape memory alloys
(Nitinol) (32), and fluidic flexible matrix composites (33). These
systems have the advantage of truly variable, user-controlled
stiffness and are used for various medical applications (34).
Polycarbonate multilayer sheets have been shown to produce
controlled bending stiffness by more than an order of magnitude
(35). Other materials can show a plastic change in stiffness in
response to aging under strain, such as ethylene vinyl acetate
(EVA) foam (36) and thermoplastic polyurethane (37). EVA
was used recently (16) to show such behavior in a mechanical
system trained for auxetic response. Another possible method,
explored specifically for origami creases (20), controls the crease
width (and, hence, stiffness) using photolitography (38). We con-
clude that several available materials and experimental methods
could implement our learning rule in an experimental setting.

The specific learning rule used in this paper requires the ability
to soften or stiffen, depending on the supervisor’s judgement of
outcome. Such a learning rule can be implemented by materials
that stiffen under strain in one condition (say, high temperature,
low pH), but soften under strain in another condition.

However, the results here also hold for simpler learning rules,
e.g., that only require plastic softening under strain. For example,
we can modify the learning rule Eq. 1 to

dki
dt

=

{
−αρ2i , if ρ(F) is correct

0, otherwise
[3]
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Fig. 5. Effect of training-set size and sheet size on test accuracy. (A) With
fewer distinct training examples, training accuracy is high, but test accuracy
is low (overfitting). Increasing the number of training examples improves
test accuracy, at the expense of training accuracy. (B) Sheets with more
creases show larger improvements in test accuracy with increasing number
training examples, as expected of complex models with more fitting param-
eters. (C) A small, untrained sheet (13 creases) shows ∼ 10 folded structures
(color coded) in response to different force patterns. A larger sheet (49
creases) shows ∼ 400 folded structures instead, each with smaller attractor
regions in the space of force patterns. Consequently, larger sheets can create
more flexible classification surfaces by combining smaller attractor regions;
such complex models with more fitting parameters require more training
examples to avoid overfitting.
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Fig. 6. Training sheets to classify Iris specimens. (A) We train a sheet to classify individual Iris specimens as one of two species based on petal and sepal
lengths and widths (26). We translate these four measurements into a spatial pattern of forces applied to the sheet. (B) Folding response of an untrained
(28 crease) sheet due to force patterns derived from the Iris data (shown in every cross-section). (C) The sheet is trained by using 10 random examples
(diamonds) of each species from the database (26) and then tested on 80 unseen test examples (circles). Matrix shows the classification of Iris flowers at
optimal training of the sheet (91% test accuracy; mistakes are denoted by x).

Such a rule is easily implemented with a strain-softening material
with no stiffening needed. For example, if the folded outcome
ρ(F) is judged correct, we hold the sheet in the folded state
ρ(F) for a longer length of time (allowing significant softening)
than when the outcome is judged incorrect (no softening). We
tested this simplified learning rule for the classification prob-
lem in Fig. 3; we find similar accuracy as earlier (Fig. 7A). As
discussed in SI Appendix, section 2, the softening modification
itself—e.g., the specific ρ2 form—is not essential as well. Many
similar monotonic k̇ ∼ f (ρ) would support learning in sheets.

Another significant experimental constraint is the dynamic
range of crease stiffnesses ki achievable in real materials without
fracture at the creases. Fortunately, we find that for well-trained
sheets, the difference in crease stiffness is moderate (Fig. 4C)
and does not exceed 30% of the mean stiffness value for a
medium-sized (28-crease) sheet. Fig. 7B shows that our required
dynamic range in stiffness is ∼ 2, well within the range for
experimentally available materials, such as shape memory poly-
mers (30, 39). Other materials like hydrogels and polycarbonates

exhibit bending stiffness that can easily adapt in a significantly
larger range (35, 38), up to an order of magnitude.

Finally, another failure mode for our training protocol is over-
training. While the variance in crease stiffness ∆k2 is critical to
eliminate attractors, overtraining can result in a sheet with only
one folded state. Our analysis, presented in Fig. 4, suggests that
large sheets should be easier to train experimentally since the
stiffness variance needed is more moderate, while the transition
to overtraining does not become much more rapid.

Discussion
In this work, we have demonstrated the supervised training of a
mechanical system, a thin creased sheet, to classify input force
patterns. As required for learning, the trained sheet not only
shows the correct response for training forces, but can gener-
alize and show the correct response to unseen test examples of
forces. We studied the relationship between training error, test
error, and the size of the sheet, which plays the role of model
complexity in supervised learning (27).
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Fig. 7. Learning is successful, even with simplified training rules and experimentally realizable stiffness. (A) A sheet (13 crease) trained on the classification
problem of Fig. 3, with a simplified, experimentally viable learning rule shown in C. (B) At peak training, the dynamic range of crease stiffness values is ∼ 2,
well within the ranges supported by existing shape memory polymers (red region) (30). (C) The trained sheet reaches peak accuracy of 80% on test force
examples (circles).
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We can understand the promises and limitations of our phys-
ical learning approach better by considering similarities and
differences with machine learning performed on computers,
including for materials design (40–43).

Generalizing by Learning Features. The core similarity is that both
methods are predicated on learning “features” from training
examples (e.g., in Fig. 1D, something common to cats, yet not
found in dogs) and, thus, classifying never-before-seen examples
correctly.

In our context, “features” are spatial correlations in forces
applied to different locations on the sheet. For example, say,
force patterns in class SA might exert anticorrelated forces at
sheet sites x and y , while the force patterns in SB show posi-
tive correlation at those sites. Meanwhile, all force patterns in
SA,SB might exert forces at site z , but those forces do not help
distinguish SA from SB . The sheet must learn which combina-
tions of forces at different locations to physically respond to (e.g.,
at x and y since they distinguish SA vs. SB ) and which combina-
tions to ignore (e.g., at z ). By learning such “features,” the sheet
can generalize, i.e., respond correctly to unseen patterns with the
same correlations.

In this way, learning can be contrasted with memory in
mechanics (44). A robust trained memory shows the correct
response for all training examples (i.e., low training error), with
no consideration of response to novel inputs. In contrast, we
seek correct responses to unseen examples (i.e., low test error),
even at some expense of training error. In this view, large sheets
trained with limited training examples memorize, while smaller
sheets with more training examples generalize.

Despite this similarity of our learning model to compu-
tational machine learning, it also differs significantly from
machine-learning algorithms in important ways.
Physical in situ training. The most significant difference is that
our learning is not carried out on a computer, but, rather, is
the result of a natural physical process that changes crease stiff-
ness in response to crease strain. That is, our sheet changes
autonomously (adapts) to physical examples of desired behav-
iors and, consequently, exhibits desired behaviors. Materials with
such intrinsic mechanical learning can be trained by an end-
user, in situ, using examples of real forces relevant to the task

at hand, rather than by a designer with a theoretical specification
of use cases; such behaviors are sought, e.g., in adaptive robotics
(45). Thus, we envision such physical learning as offering sig-
nificant benefits compared to traditional machine learning and
computational design in general.
Physical plausible local training. Physical plausibility of learning
rules also constrain what can be learned; e.g., to maintain phys-
ical plausibility, we only explored a “local” learning rule where
stiffness of crease i is changed only by strain in crease i and
not creases far away. Learning models in neuroscience are often
restricted to be similarly local for biological plausibility (e.g.,
Hebb’s rule). In contrast, artificial neural networks, trained on
computers, face no such constraint; e.g., weights can be updated
through back propagation to minimize a loss function, a highly
nonlocal operation.

Our reliance on a physically plausible local process, instead of
minimizing a loss function, might limit our capabilities compared
to artificial neural networks. However, experience in neuro-
science suggests that these limitations might be weaker than
naively expected (46, 47). For example, our local learning rules
can still learn nonlocal correlations in input forces since the
sheet’s folding response to input forces is nonlocal, a property
exploited by biological neural networks as well (24, 25).

Finally, unlike typical machine-learning methods, our restric-
tion to physically plausible learning rules that soften creases in
proportion to strain allows for some interpretation for “weights”
(i.e., crease stiffnesses) learned. For example, if a force pat-
tern results in an incorrectly folded structure, strongly folded
creases due to this force will be stiffer than average after train-
ing. A more systematic understanding of the trade-offs between
physical plausibility, interpretability, and computational power
of learning rules is critical to understand the limits of learned
behavior in matter.

Data Availability. Data and Matlab codes for training origami
sheets are included in Datasets S1–S4.
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